

Report

Security Test Stereum

Customer RockLogic GmbH

Recipient stereum@stereum.net

Date Vienna, October 4, 2021

Project ID 2021-09-010

Test period September 20 to 29, 2021

Version 1.0

Classification Confidential

mailto:stereum@stereum.net

Confidential

SBA Research gGmbH Page 1 of 31

Document History
Document name RockLogic 2021-09-010 SBA Report White Box Penetration Test

Stereum.docx

Version Date Tester Review (QA) Notes

1.0 2021-10-04
Martin Grottenthaler

Franz Wieshaider
Thomas Konrad First version

Confidential

SBA Research gGmbH Page 2 of 31

Table of Contents
1 Management Summary ... 3

1.1 Findings Overview ... 5

2 Test Scope ... 7

3 Methodology ... 8

3.1 Severity Rating (Severity Levels) ... 8

3.2 Remediation Status ... 8

4 Findings.. 9

4.1 Command Execution in Electron Application .. 9

4.2 SSH Tunnels Listen on Any IPv4 Address .. 11

4.3 Path Traversal ... 12

4.4 Links in Electron App Should Be Opened in Native Application 14

4.5 Firewall Not Configured ... 16

4.6 No Authentication Between Electron Client and Web Server .. 17

4.7 Secrets Checked into Repository .. 18

4.8 SSH Password in Standard Output ... 19

4.9 Docker Container Runs with Root Privileges .. 20

4.10 Reduce Root Account Usage .. 21

4.11 Missing Integrity Checks for Third-Party Dependencies.. 23

4.12 Password Stored as SHA512 ... 25

4.13 Use of RSA Public-Key Algorithm for SSH .. 26

4.14 Code Pipeline Should Include More Checks... 27

4.15 Do Not Use GPG ... 29

5 Appendix ... 31

5.1 List of Figures ... 31

5.2 List of Tables ... 31

Confidential

SBA Research gGmbH Page 3 of 31

1 Management Summary

This report summarizes the results of the security test conducted by SBA Research. The test

team performed a white-box penetration test, a review of the software architecture of

the Stereum system. We spent 12.5 person-days doing this, including documentation. The

test team followed a risk-based approach to discover severe vulnerabilities first (time-box ap-

proach).

The assessed system has a satisfactory level of security. We could find four vulnerabilities with

a high severity. The exploitability of those vulnerabilities is limited though, because of the well-

structured architecture of the system.

Many of the higher severity vulnerabilities concern the Electron application. We strongly rec-

ommend to closely follow Electron hardening guides and security recommendations. The

found vulnerabilities could allow an attacker, who is in the same network as the user, to take

over the server (see 4.2 and 4.3) and then manipulate the application to attack the machine of

the user (see 4.1). Due another vulnerability, which allows users to use the application like a

browser, they could also fall victim to phishing attacks (see 4.4). Because of the previously

mentioned vulnerability, phishing attacks could lead to remote code execution by only clicking

a link in e.g., Discord (see 4.1).

The rest of the found vulnerabilities are mostly recommendations that would reduce the attack

surface of the application. Those vulnerabilities are not easily exploitable. Their existence stems

from underlying architectural problems that are described in detail below.

Summary of the Software Architecture

There is no documentation of the structure of the system. With diagrams and documentation,

it is easier for an auditor to get an understanding of the system and its many components

playing together. At least three vulnerabilities (see 4.2, 4.5 and 4.6) found are at the touch-

points between those components. From our perspective, documentation on the structure of

the system would not only help us to understand all components, but also the open-source

community and the project team to identify problems and improvement potential in the whole

system. We also recommend having a list of third-party dependencies to be able to respond

quickly to newly found vulnerabilities in those dependencies and to incentivize developers to

think twice before a new dependency is added.

A particularly important aspect to document is what the user must manage and what Stereum

manages. For example: OS updates can be done over the Stereum application, but the SSH

config is not touched by Stereum. It must be managed by the user. We recommend defining

clear boundaries, so that it is transparent for the user of what they must take care of them-

selves.

The organization of the Git repositories could be improved. There is code which is no longer

in use, as well as commented-out source code and even secrets (see 4.7). Furthermore, we

recommend to merge repositories to reduce the complexity and to allow code pipelines to be

Confidential

SBA Research gGmbH Page 4 of 31

centrally managed. This also has the added benefit that the Git history would be purged of

potentially sensitive data (like email addresses which could be used for phishing).

We were able to find deviations from the hardening and security guideless for many of the

used solutions. Those should be closely followed, because this could have prevented some of

the found vulnerabilities (see e.g., 4.1, 4.9). This is especially important in a system like this,

with extremely high security requirements. We also recommend reevaluating the use of Elec-

tron in the Stereum launcher. As previously mentioned, many severe vulnerabilities stem from

the use of Electron, they could have been prevented if a normal browser had been used in-

stead.

In general, we recommend using a least-privilege approach, meaning to not require more

privileges than necessary for actions on the Stereum server and in the Docker containers. This

concerns the Docker containers that run with root privileges (see 4.9) and commands which

are executed with sudo (see 4.10). One way to improve here is to change the architecture in a

way that software is installed to non-system directories. This would allow those commands to

be executed with the privileges of a normal user. This would also make it possible to only allow

certain commands to be executed as root without having to specify a password, instead of

allowing all commands.

Another important topic are third-party dependencies. They could be used for supply-chain

attacks, either by a rogue third-party developer directory or an attack on a third party. Thus,

we recommend verifying the integrity of all third-party dependencies (see 4.11). Another im-

provement here would be to implement an automatic code pipeline. Those automatic checks

would verify that source code has no security or functionality issues that could easily be iden-

tified with automated tools and that third-party dependencies are up to date and free of

publicly known vulnerabilities (see 4.14).

The architecture of the complete system seems to be well thought out. The concept that all

the communication between the server and the client is done over SSH helps shifting many

common problems to SSH, which is a battle-proven protocol and implementation. The inten-

tional limitations of the system, like that it has no multi-user support, reduce the complexity,

and thus also help reducing the attack surface.

Confidential

SBA Research gGmbH Page 5 of 31

1.1 Findings Overview

The following table gives an overview of all findings.

 Severity Chapter Vulnerability Affected System

 High 4.1
Command Execution in Electron Applica-

tion
ethereum-setup

 High 4.2 SSH Tunnels Listen on Any IPv4 Address ethereum-setup

 High 4.3 Path Traversal
ethereum2-control-

center-web

 High 4.4
Links in Electron App Should Be Opened

in Native Application

ethereum2-control-

center-web

 Medium 4.5 Firewall Not Configured ethereum2-ansible

 Medium 4.6
No Authentication Between Electron Cli-

ent and Web Server

ethereum2-control-

center-web

 Medium 4.7 Secrets Checked into Repository
ethereum2-docker-

compose

 Medium 4.8 SSH Password in Standard Output Stereum Launcher

 Low 4.9
Docker Container Runs with Root Privi-

leges

ethereum2-docker-

compose

 Low 4.10 Reduce Root Account Usage
ethereum2-ansible

ethereum-setup

 Low 4.11
Missing Integrity Checks for Third-Party

Dependencies

ethereum-setup

ethereum2-ansible

ethereum2-control-

center-web

ethereum2-docker-

compose

 Info 4.12 Password Stored as SHA512 ethereum-setup

 Info 4.13 Use of RSA Public-Key Algorithm for SSH ethereum-setup

Confidential

SBA Research gGmbH Page 6 of 31

 Severity Chapter Vulnerability Affected System

 Info 4.14
Code Pipeline Should Include More

Checks

ethereum-setup

ethereum2-ansible

ethereum2-control-

center-web

ethereum2-docker-

compose

 Info 4.15 Do Not Use GPG ethereum2-ansible

Table 1: Vulnerabilities Overview

The following diagram shows the distribution of vulnerabilities. We are counting every instance

of a vulnerability here.

Figure 1: Severity Distribution

0

4

4

7

7
Critical

High

Medium

Low

Info

Confidential

SBA Research gGmbH Page 7 of 31

2 Test Scope

The project’s goal was to perform a white box penetration test of the following GitHub repos-

itories:

• stereum-dev/ethereum-setup

• stereum-dev/ethereum2-ansible

• stereum-dev/ethereum2-control-center-web

The following repository was also assessed, but with a lower priority. This was done especially,

because the third-party Ethereum clients were out of scope:

• stereum-dev/ethereum2-docker-compose

The test was conducted between September 20 and September 29, 2021.

Figure 2: Screenshot of the Stereum application

Confidential

SBA Research gGmbH Page 8 of 31

3 Methodology

3.1 Severity Rating (Severity Levels)

To classify severity, the following severity levels are distinguished:

 Severity Level Description

 Critical
Countermeasures should be implemented as soon as possible. The risk

should not be accepted.

 High

The combination of multiple vulnerabilities often poses a critical risk. We

recommend, to quickly implement countermeasures. Fixing these vulner-

abilities should only be postponed if the remediation requires a

significant amount of work.

 Medium

Remedy of these vulnerabilities increases the security level significantly.

The combination of multiple vulnerabilities can pose a high risk. There-

fore, the testing team recommends a reasonable quick reaction.

 Low

Most of these findings do not pose a direct threat individually but can be

combined to cause a serious threat. They could also reveal information

about the system, which could help an attacker in the exploitation of

other vulnerabilities. Nevertheless, it is important to implement counter-

measures against these vulnerabilities as well.

 Info

These findings are mostly recommended defense in depth measures.

They should be implemented to further increase the security level of the

application by impeding or completely preventing the exploitation of cer-

tain vulnerabilities. By themselves they normally do not pose a threat.

3.2 Remediation Status

When a retest is performed, the remediation status of a vulnerability will be specified as:

• Resolved: The described vulnerability could not be detected anymore.

• Partially resolved: The remediation was found to be not complete or not adequate.

• Not resolved: The described vulnerability could still be detected.

• New: The described vulnerability was newly found during the retest.

• Not tested: The vulnerability was not tested again or could not be tested again.

• Revoked: Following a better understanding of the client’s requirements and his design

decisions the described vulnerability is not regarded as a vulnerability anymore.

Confidential

SBA Research gGmbH Page 9 of 31

4 Findings

4.1 Command Execution in Electron Application

 Severity

High

 Affected Systems

• ethereum-setup

 Vulnerability Details

Due to the Node.js integration of Electron, it is possible to execute commands on the cli-

ent’s operation system. The feature is enabled in the file electron-

launcher/src/background.js:

async function createWindow() {
 // Create the browser window.
 const win = new BrowserWindow({
 width: 1024,
 height: 768,
 webPreferences: {
 // Use pluginOptions.nodeIntegration, leave this alone
 // See nklayman.github.io/vue-cli-plugin-electron-
builder/guide/security.html#node-integration for more info
 //devTools: false,
 nodeIntegration: true,
 preload: path.join(__dirname, 'preload.js'),
 }
 })

Because of that it is possible for an attacker, if they compromise the server, to include script

code in the web application:

Figure 3: Injected script code in “index.html”

This code (sleep 100) is then executed by the electron application on the user’s operation

system:

Figure 4: "sleep 100" gets executed on the client

Confidential

SBA Research gGmbH Page 10 of 31

 Countermeasures

We recommend disabling the Node.js integration in the application to stop this exploit.

Furthermore, it should be evaluated if the electron application follows the Electron Security

Recommendations [1], where this topic is also mentioned.

Other features that should be active are contextIsolation and sandboxing. These harden

the Electron application.

✓ This vulnerability has already been fixed. In the new version command execution is

not possible anymore.

 References

[1] OpenJS Foundation. Security Recommendations: https://www.electronjs.org/docs/tuto-

rial/security

https://www.electronjs.org/docs/tutorial/security
https://www.electronjs.org/docs/tutorial/security

Confidential

SBA Research gGmbH Page 11 of 31

4.2 SSH Tunnels Listen on Any IPv4 Address

 Severity

High

 Affected Systems

• ethereum-setup

 Vulnerability Details

The SSH tunnels that are opened by the Stereum Launcher application listen on any IPv4

address 0.0.0.0. This can be verified by an ss output:

$ ss -ltp
State Local Address:Port Peer Address:Port Process
LISTEN 0.0.0.0:tproxy 0.0.0.0:* users:(("stereum-launche"))
LISTEN 0.0.0.0:8082 0.0.0.0:* users:(("stereum-launche"))
LISTEN 0.0.0.0:8083 0.0.0.0:* users:(("stereum-launche"))
[…]

If the client, where the Stereum Launcher is installed, has no firewall configured, everyone

in the same network can access the services.

This can, for example, be done by entering the IP address of the client and port of the SSH

tunnel in a web browser to access the Stereum UI:

Figure 5: Accessing the web interface from another PC

 Countermeasures

The sockets must be configured to only listen on localhost (127.0.0.1) to ensure that no

external entity can access the services.

✓ This vulnerability has already been fixed. The service is now listening on localhost.

Confidential

SBA Research gGmbH Page 12 of 31

4.3 Path Traversal

 Severity

High

 Affected Systems

• ethereum2-control-center-web

 Vulnerability Details

Due to an insufficient validation of a file name input, arbitrary files on the server can be

accessed.

What Is a Path Traversal Vulnerability?

In a path traversal attack, an attacker attempts to manipulate a file name input parameter

so that a file outside the permitted location is accessed. This is possible because the input

value is directly used to construct the path to a file that is accessed in the application.

The following example describes such a scenario in PHP. Here, a page is included using

include using the value of an HTTP GET parameter named page.

// index.php
include('./includes/pages/' . $_GET['page']);

An attacker can use the string ../ to change to directories above the permitted one. In the

following example attack, the attacker accesses a configuration file that might contain cre-

dentials.

https://www.example.org/index.php?page=../../config/.env

The attacker can only access files which the current operating system process (e.g., the web

server) has access to.

Specific Finding in This Application

The API endpoint in ethereum2-control-center-web receives requests from electron-

launcher, for example:

POST /api/setup/start HTTP/1.1
Host: localhost:8081
Cache-Control: max-age=0
Content-Length: 97

{
 "inventory": "inventory.yaml",
 "playbook": "restart-host.yaml",
 "extra_vars": {},
 "extraVars": {}
}

Confidential

SBA Research gGmbH Page 13 of 31

It is possible to change the attribute "playbook" to another file, for example

../../../../../../etc/shadow and retrieve a part of the file's content:

HTTP/1.1 500 Internal Server Error
date: Wed, 22 Sep 2021 10:58:47 GMT
server: uvicorn
content-length: 330
content-type: application/json
Connection: close

{
 "detail": "A playbook must be a list of plays, got a <class
'ansible.parsing.yaml.objects.AnsibleMapping'> instead\n\nThe error
appears to be in '/etc/shadow': line 1, column 1, but may\nbe elsewhere
in the file depending on the exact syntax problem.\n\nThe offending line
appears to be:\n\n\nroot:*:18725:0:99999:7:::\n^ here\n"
}

The error message contains a line of the shadow file, which also proves that the web server has

root permissions (see 4.9) to access the file.

 Countermeasures

Input values must not be used to construct file paths without strict validation. Ideally, the

file path is not passed directly, but indirectly via an ID to the file, and the concrete file path

is stored, e.g., in a database.

If this is not possible, we recommend a strict validation of the input as a minimum. This

includes the normalization (canonicalization) of the path and only then the validation that

the resulting path points to the allowed directory. This method, however, bears some room

for errors.

✓ This vulnerability has already been fixed. The application returns a generic error

message

 References

[1] OWASP Web Security Testing Guide. Testing Directory Traversal File Include:

https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Applica-

tion_Security_Testing/05-Authorization_Testing/01-

Testing_Directory_Traversal_File_Include.html

https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/05-Authorization_Testing/01-Testing_Directory_Traversal_File_Include.html
https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/05-Authorization_Testing/01-Testing_Directory_Traversal_File_Include.html
https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/05-Authorization_Testing/01-Testing_Directory_Traversal_File_Include.html

Confidential

SBA Research gGmbH Page 14 of 31

4.4 Links in Electron App Should Be Opened in Native Applica-

tion

 Severity

High

 Affected Systems

• ethereum2-control-center-web

 Vulnerability Details

To reduce the attack surface of the electron application, external links should be opened in

the systems default (native) application. The electron application contains links to external

resources:

These links get opened in a new electron window, as shown here by clicking on the “Dis-

cord” link:

Figure 6: Discord website in Electron Launcher

A malicious person could therefore trick the user into clicking a malicious link, for example,

on the project's discord page, which contains executable electron code (see 4.1).

Confidential

SBA Research gGmbH Page 15 of 31

 Countermeasures

To reduce the attack surface of the electron application, every external link should be

opened in the system’s default application, in this case the native default browser.

When opening resources in native applications, it should be noted that it is important to

only open static protocol URIs and no user-controlled data [1].

 References

[1] OpenJS Foundation. Security Recommendations: https://www.electronjs.org/docs/tuto-

rial/security#15-do-not-use-openexternal-with-untrusted-content

https://www.electronjs.org/docs/tutorial/security#15-do-not-use-openexternal-with-untrusted-content
https://www.electronjs.org/docs/tutorial/security#15-do-not-use-openexternal-with-untrusted-content

Confidential

SBA Research gGmbH Page 16 of 31

4.5 Firewall Not Configured

 Severity

Medium

 Affected Systems

• ethereum2-ansible

 Vulnerability Details

The status of the firewall UFW on the server node is the following:

ufw status verbose
Status: active
Logging: on (low)
Default: allow (incoming), allow (outgoing), deny (routed)
New profiles: skip

This means that no rule is set and therefore the default rule is applied to the packets which

allows all incoming traffic. Restricting incoming traffic on a firewall is a common task in

cyber security to reduce the attack surface and should also be applied to the server node.

Also, the Eth2 validator checklist [1] recommends setting up a firewall.

 Countermeasures

Only the needed external ports for the application to function correctly should be exposed

to the public with firewall rules, all other ports should be denied by the firewall.

The default rule should be deny (incoming).

✓ This vulnerability has already been fixed. The firewall's default rule is deny

(incoming) and rules for specific services exist now.

 References

[1] Ethereum Foundation. Eth2 validator checklist:

https://launchpad.ethereum.org/en/checklist

https://launchpad.ethereum.org/en/checklist

Confidential

SBA Research gGmbH Page 17 of 31

4.6 No Authentication Between Electron Client and Web Server

 Severity

Medium

 Affected Systems

• ethereum2-control-center-web

 Vulnerability Details

The web server does not require authentication. Even though it is only accessible on lo-

calhost, authentication should be required, because else all users and programs on the

system can access the web server (e.g., on a shared Windows instance) and make requests

to it.

For example, without authentication, this request can be performed, which restarts the

server:

POST /api/setup/start HTTP/1.1
Host: localhost:8081
Content-Length: 92
Origin: http://localhost:8081
Connection: close

{"inventory":"inventory.yaml","playbook":"restart-
host.yaml","extra_vars":{},"extraVars":{}}

 Countermeasures

We recommend generating a random API Key on each connection which is then passed in

an HTTP header. This way the authentication would be completely transparent for the user,

they would only have to enter the SSH credentials.

Not only the /api/setup/start endpoint, but also the /api/setup/status endpoint

should be covered by the authentication.

With that improvement, other users or malicious programs are not able to communicate

with the webserver without knowing the API key.

Confidential

SBA Research gGmbH Page 18 of 31

4.7 Secrets Checked into Repository

 Severity

Medium

 Affected Systems

• ethereum2-docker-compose

 Vulnerability Details

At least two private keys could be found checked into the repository:

1. https://github.com/stereum-dev/ethereum2-docker-compose/tree/master/con-

fig/dirk/certs

2. https://github.com/stereum-dev/ethereum2-docker-compose/tree/master/con-

fig/vouch/certs

Those keys must be considered compromised. They are used for authentication between

dirk and vouch.

 Countermeasures

Those private keys should be removed and not used anymore. In the future, those keys

should be generated when the application is deployed. Otherwise, all installations of

Stereum will effectively use the same public key pair.

https://github.com/stereum-dev/ethereum2-docker-compose/tree/master/config/dirk/certs
https://github.com/stereum-dev/ethereum2-docker-compose/tree/master/config/dirk/certs
https://github.com/stereum-dev/ethereum2-docker-compose/tree/master/config/vouch/certs
https://github.com/stereum-dev/ethereum2-docker-compose/tree/master/config/vouch/certs

Confidential

SBA Research gGmbH Page 19 of 31

4.8 SSH Password in Standard Output

 Severity

Medium

 Affected Systems

• Stereum Launcher

 Vulnerability Details

The Stereum launcher logs SSH connection information to stdout. This includes the clear-

text password.

Figure 7: SSH connection details are logged to stdout

This vulnerability could, for example, enable somebody to see the screen of the victim, to

steal the SSH credentials of the server, and to take over this server. This would lead to an

attacker being able to steal the signing keys of the Ethereum staking node.

 Countermeasures

We recommend replacing the password with e.g., ****.

✓ This vulnerability has already been fixed. Connection information is not logged

anymore.

Confidential

SBA Research gGmbH Page 20 of 31

4.9 Docker Container Runs with Root Privileges

 Severity

Low

 Affected Systems

• ethereum2-docker-compose

 Vulnerability Details

One of the best practices while running Docker Container is to run processes with a non-

root user. This is because if an attacker manages to break out of the application running as

root in the container, they may gain root-user access on host. In addition, configuring con-

tainer to run as unprivileged user is the best way to prevent privilege-escalation attacks.

The Docker container stereum/control-center-web:1.6-169 runs with root privileges.

This can be verified by executing the id command inside of the container:

docker ps
CONTAINER ID IMAGE […]
6f50c6971694 stereum/control-center-web:1.6-169 […]

docker exec -it 6f50c6971694 id
uid=0(root) gid=0(root) groups=0(root)

Due this configuration, it was possible to use a path traversal vulnerability (see 4.3) to read

a part of the Linux “shadow” file.

 Countermeasures

We recommend running the processes in the container as non-root user, as recommended

in the documentation [1].

 References

[1] Docker. Best practices for writing Dockerfiles: https://docs.docker.com/develop/de-

velop-images/dockerfile_best-practices/#user

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#user
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#user

Confidential

SBA Research gGmbH Page 21 of 31

4.10 Reduce Root Account Usage

 Severity

Low

 Affected Systems

• ethereum2-ansible

• ethereum-setup

 Vulnerability Details

Currently, the root account is used for many commands. For this to work, the sudoers file

must be changed, so that every command can be executed without entering a password.

This is not compliant with the principle of least privilege.

Ansible scripts that are executed as root (become: yes) are at least the following:

ethereum2-ansible/export-config.yaml
ethereum2-ansible/finish-update.yaml
ethereum2-ansible/list-validator-accounts.yaml
ethereum2-ansible/stop-and-update.yaml
ethereum2-ansible/update-check.yaml
ethereum2-ansible/roles/check-imported-keys-teku/tasks/main.yaml
ethereum2-ansible/roles/check-keys-password-teku/tasks/main.yaml
ethereum2-ansible/roles/configure-timesyncd/tasks/main.yaml
ethereum2-ansible/roles/delete-validator-keys-lighthouse/tasks/main.yaml
ethereum2-ansible/roles/delete-validator-keys-lodestar/tasks/main.yaml
ethereum2-ansible/roles/delete-validator-keys-nimbus/tasks/main.yaml
ethereum2-ansible/roles/delete-validator-keys-prysm/tasks/main.yaml
ethereum2-ansible/roles/delete-validator-keys-teku/tasks/main.yaml
ethereum2-ansible/roles/exit-validator-keys-lighthouse/tasks/main.yaml
ethereum2-ansible/roles/exit-validator-keys-teku/tasks/main.yaml
ethereum2-ansible/roles/export-config-lighthouse/tasks/main.yaml
ethereum2-ansible/roles/export-config-lodestar/tasks/main.yaml
ethereum2-ansible/roles/export-config-nimbus/tasks/main.yaml
ethereum2-ansible/roles/export-config-prysm/tasks/main.yaml
ethereum2-ansible/roles/export-config-teku/tasks/main.yaml
ethereum2-ansible/roles/git-checkout-tag/tasks/main.yaml
ethereum2-ansible/roles/git-update-fetch-merge/tasks/main.yaml
ethereum2-ansible/roles/import-config/tasks/main.yaml
ethereum2-ansible/roles/import-validator-keys-lighthouse/tasks/main.yaml
ethereum2-ansible/roles/import-validator-keys-lodestar/tasks/main.yaml
ethereum2-ansible/roles/import-validator-keys-
multiclient/tasks/main.yaml
ethereum2-ansible/roles/import-validator-keys-nimbus/tasks/main.yaml
ethereum2-ansible/roles/import-validator-keys-prysm/tasks/main.yaml
ethereum2-ansible/roles/import-validator-keys-teku/tasks/main.yaml
ethereum2-ansible/roles/install-e2a/tasks/main.yaml
ethereum2-ansible/roles/install-e2ccc/tasks/main.yaml
ethereum2-ansible/roles/install-e2dc/tasks/main.yaml
ethereum2-ansible/roles/list-validator-keys-lighthouse/tasks/main.yaml
ethereum2-ansible/roles/list-validator-keys-nimbus/tasks/main.yaml

Confidential

SBA Research gGmbH Page 22 of 31

ethereum2-ansible/roles/list-validator-keys-teku/tasks/main.yaml
ethereum2-ansible/roles/load-blockchain-db/tasks/restore-blockchain-
db.yaml
ethereum2-ansible/roles/remove-tmp-password-prysm/tasks/main.yaml
ethereum2-ansible/roles/send-blockchain-db/tasks/main.yaml
ethereum2-ansible/roles/set-docker-tag/tasks/main.yaml
ethereum2-ansible/roles/set-graffiti/tasks/main.yaml
ethereum2-ansible/roles/write-config/tasks/write-to-file.yaml

 Countermeasures

The principle of least privilege should be followed where possible. We recommend installing

software to user directories instead of system directories, to allow them to be installed and

configured without root privileges. This would allow to only allow specific commands in the

sudoers file. We recommend against telling users to configure their systems in an insecure

way.

Confidential

SBA Research gGmbH Page 23 of 31

4.11 Missing Integrity Checks for Third-Party Dependencies

 Severity

Low

 Affected Systems

• ethereum-setup

• ethereum2-ansible

• ethereum2-control-center-web

• ethereum2-docker-compose

 Vulnerability Details

Third-party dependencies can be dangerous, because those are implicitly trusted by the

software. If the application automatically includes new versions of the dependency, a com-

promised or rouge third-party developer could easily inject malicious code in the

dependency, which then in turn gets included in the application. This could be used by an

attacker to target users of the Stereum application.

 Countermeasures

The first measure which should be taken is to keep the number of third-party dependencies

to a minimum. Only dependencies that are really needed should be included, and it should

be verified that those dependencies are secure and can be trusted. We recommend having

a central list of all third-party dependencies to have an overview over all of them.

Secondly, we recommend to always verify the integrity of third-party dependencies. This

protects against MITM attacks and against manipulation of code. This measure will ensure

that users will always have exactly the same code, as the code that was tested.

Docker Implementation

Docker allows to specify the SHA256 hash of a docker image. We recommend adding this

hash to every Docker image [1].

pip Implementation

pip also allows to specify a hash in the requirements.txt [2]. All the dependencies are

already pinned to a specific version. Therefore, it would not be a lot of work to also add the

hashes of all requirements.

Node Packages

NPM by default adds the hashes of the dependencies to the package-lock.json file. No

additional actions need to be taken here.

APT and DNF

The two Linux package managers are also used in some of the scripts. APT and DNF enable

package signing by default, thus the attack would be more complicated. We think, that

considering the circumstances, this risk can be accepted.

Confidential

SBA Research gGmbH Page 24 of 31

 References

[1] Docker. docker pull: https://docs.docker.com/engine/reference/command-

line/pull/#pull-an-image-by-digest-immutable-identifier

[2] pip. pip install: https://pip.pypa.io/en/stable/cli/pip_install/#hash-checking-mode

https://docs.docker.com/engine/reference/commandline/pull/#pull-an-image-by-digest-immutable-identifier
https://docs.docker.com/engine/reference/commandline/pull/#pull-an-image-by-digest-immutable-identifier
https://pip.pypa.io/en/stable/cli/pip_install/#hash-checking-mode

Confidential

SBA Research gGmbH Page 25 of 31

4.12 Password Stored as SHA512

 Severity

Info

 Affected Systems

• ethereum-setup

 Vulnerability Details

The password of the stereum user is auto generated by Ansible and then stored as a

SHA512 hash. SHA512 is not meant for storing passwords, it is a hash algorithm which is

optimized for performance, unlike for example argon2 or bcrypt.

This is defined here:

$ cat ./roles/stereum-base/tasks/setup-users.yml

- name: Add stereum user
 user:
 name: "{{ ubuntu_common_stereum_user_name }}"
 password: "{{ ubuntu_common_stereum_password |
password_hash('sha512') }}"
 shell: /bin/bash
 generate_ssh_key: yes
 ssh_key_type: rsa
 ssh_key_bits: 4096
 ssh_key_file: .ssh/id_rsa
 force: no

 Countermeasures

We recommend switching to bcrypt for password storage [1].

 References

[1] auth0. Hashing in Action: Understanding bcrypt: https://auth0.com/blog/hashing-in-

action-understanding-bcrypt/

https://auth0.com/blog/hashing-in-action-understanding-bcrypt/
https://auth0.com/blog/hashing-in-action-understanding-bcrypt/

Confidential

SBA Research gGmbH Page 26 of 31

4.13 Use of RSA Public-Key Algorithm for SSH

 Severity

Info

 Affected Systems

• ethereum-setup

 Vulnerability Details

The current used public-key algorithm RSA which does not provide provides Perfect For-

ward Secrecy. The use of the modern public-key signature algorithm Ed25519 is

recommended.

 Countermeasures

The more modern Ed25519 has several advantages over the currently used 4096-bit RSA

public-key algorithm. First and foremost, it provides Perfect Forward Secrecy, which makes

it impossible for an attacker to decrypt previously recorded traffic if he or she breaks the

Ed25519 key today.

Also, it is also a very fast signature algorithm, does not require random input, is resilient to

hash-function collisions, immune to cache-timing and side-channel attacks that rely on

leakage of information through the branch-prediction unit. [1]

✓ This vulnerability has already been fixed, Ed25519 is now in use.

 References

[1] Peter Ruppel. Ed25519 for SSH: https://blog.peterruppel.de/ed25519-for-ssh/

https://blog.peterruppel.de/ed25519-for-ssh/

Confidential

SBA Research gGmbH Page 27 of 31

4.14 Code Pipeline Should Include More Checks

 Severity

Info

 Affected Systems

• ethereum-setup

• ethereum2-ansible

• ethereum2-control-center-web

• ethereum2-docker-compose

 Vulnerability Details

We recommend improving the code pipeline to include more checks on known vulnerabil-

ities and outdated versions. A code pipeline is an easy way to detect easy to find

vulnerabilities and regularly check whether third party dependencies are still up to date.

GitHub offers code pipelines via the feature GitHub Actions [1].

 Countermeasures

We recommend at least the following checks:

ShellCheck

ShellCheck [2] is a simple static analysis tool for shell scripts. We recommend fixing all Shell-

Checks errors and implement a ShellCheck pipeline in all repositories that contain

ShellScripts.

The following GitHub Action can be used to automatically run ShellCheck on new commits:

https://github.com/marketplace/actions/shellcheck

✓ This check was already implemented during the test. It is now in action for the

following Git repositories: ethereum2-docker-compose and ethereum2-ansible

Kics

Kics [3] is a solution for static analysis of Infrastructure as Code. In the Stereum project it

can be used for a variety of security checks: e.g., on: Ansible, Dockerfiles, …

The following GitHub Action can be used to automatically run kics on new commits:

https://github.com/marketplace/actions/kics-github-action

Outdated Python Dependencies

The Stereum project uses Python in various places. The Python dependencies should be

regularly checked for vulnerabilities and outdated versions. This can for example be imple-

mented using pip [4], which can print outdated version. Or with specialized solutions like

safety [5]. Safety can be for example be implemented with this GitHub Action:

https://github.com/marketplace/actions/python-safety-check

https://github.com/marketplace/actions/shellcheck
https://github.com/marketplace/actions/kics-github-action
https://github.com/marketplace/actions/python-safety-check

Confidential

SBA Research gGmbH Page 28 of 31

OWASP Dependency-Check

OWASP Dependency-Check [6] is a powerful tool to check for vulnerabilities in third party

dependencies. We recommend implementing this check and executing it regularly (e.g., at

least once a week) to be notified about newly found vulnerabilities in third party depend-

encies.

Node Packages

We recommend to also check for outdated Node packages regularly. This can for example

be done with the built-in NPM audit command.

General Recommendations

These checks should pass successfully for at least every commit to the main/master

branches. If there are less developed repositories with a long timespan between commits,

we recommend to also execute the checks regularly (e.g., one a week) to be able to identify

newly found vulnerabilities in third party dependencies.

 References

[1] GitHub. GitHub Actions: https://docs.github.com/en/actions

[2] koalaman. ShellCheck - A shell script static analysis tool: https://github.com/ko-

alaman/shellcheck

[3] kikcs. keeping infrastructure as code secure: https://kics.io/

[4] StackOverflow. Find outdated/updatable pip packages: https://superuser.com/ques-

tions/259474/find-outdated-updatable-pip-packages

[5] pyupio. safety: https://github.com/pyupio/safety

[6] jeremylong. Dependency-Check: https://github.com/jeremylong/DependencyCheck

[7] NPM. npm-audit: https://docs.npmjs.com/cli/v7/commands/npm-audit

https://docs.github.com/en/actions
https://github.com/koalaman/shellcheck
https://github.com/koalaman/shellcheck
https://kics.io/
https://superuser.com/questions/259474/find-outdated-updatable-pip-packages
https://superuser.com/questions/259474/find-outdated-updatable-pip-packages
https://github.com/pyupio/safety
https://github.com/jeremylong/DependencyCheck
https://docs.npmjs.com/cli/v7/commands/npm-audit

Confidential

SBA Research gGmbH Page 29 of 31

4.15 Do Not Use GPG

 Severity

Info

 Affected Systems

• ethereum2-ansible

 Vulnerability Details

The project currently uses GPG to encrypt files. While this is not a security vulnerability per

se, we do not recommend using GPG for new projects, because there are better more mod-

ern solutions [1]. GPG is used in the following scripts:

stereum-dev/ethereum2-ansible/roles/export-config-prysm/tasks/main.yaml:
 1 ---
 2 - name: Export config - ethereum2.yaml file
 3: shell: echo "{{ export_config_password | quote }}" | gpg -c --
output /tmp/exported-config/exported_config.gpg --batch --yes --
passphrase-fd 0 ethereum2.yaml
 4 args:
 5 chdir: "/etc/stereum/"

stereum-dev/ethereum2-ansible/roles/export-config-
nimbus/tasks/main.yaml:
 1 ---
 2 - name: Export config - ethereum2.yaml file
 3: shell: echo "{{ export_config_password | quote }}" | gpg -c --
output /tmp/exported-config/exported_config.gpg --batch --yes --
passphrase-fd 0 ethereum2.yaml
 4 args:
 5 chdir: "/etc/stereum/"

stereum-dev/ethereum2-ansible/roles/import-config/tasks/main.yaml:
 13
 14 - name: Decrypt configuration file
 15: shell: echo "{{ exported_config_password | quote }}" | gpg -d -
-output /tmp/exported-config/ethereum2.yaml --batch --yes --passphrase-
fd 0 /tmp/exported-config/exported_config.gpg
 16 args:
 17 chdir: "/tmp/exported-config"

stereum-dev/ethereum2-ansible/roles/export-config-
lodestar/tasks/main.yaml:
 1 ---
 2 - name: Export config - ethereum2.yaml file
 3: shell: echo "{{ export_config_password | quote }}" | gpg -c --
output /tmp/exported-config/exported_config.gpg --batch --yes --
passphrase-fd 0 ethereum2.yaml
 4 args:
 5 chdir: "/etc/stereum/"

Confidential

SBA Research gGmbH Page 30 of 31

stereum-dev/ethereum2-ansible/roles/export-config-
lighthouse/tasks/main.yaml:
 1 ---
 2 - name: Export config - ethereum2.yaml file
 3: shell: echo "{{ export_config_password | quote }}" | gpg -c --
output /tmp/exported-config/exported_config.gpg --batch --yes --
passphrase-fd 0 ethereum2.yaml
 4 args:
 5 chdir: "/etc/stereum/"

stereum-dev/ethereum2-ansible/roles/export-config-teku/tasks/main.yaml:
 1 ---
 2 - name: Export config - ethereum2.yaml file
 3: shell: echo "{{ export_config_password | quote }}" | gpg -c --
output /tmp/exported-config/exported_config.gpg --batch --yes --
passphrase-fd 0 ethereum2.yaml
 4 args:
 5 chdir: "/etc/stereum/"

 Countermeasures

We recommend to for example use age [2].

 References

[1] Manish Gehlot. Age - the modern alternative to GPG: https://nixfaq.org/2021/01/age-

the-modern-alternative-to-gpg.html

[2] FiloSottile. age: https://github.com/FiloSottile/age

https://nixfaq.org/2021/01/age-the-modern-alternative-to-gpg.html
https://nixfaq.org/2021/01/age-the-modern-alternative-to-gpg.html
https://github.com/FiloSottile/age

Confidential

SBA Research gGmbH Page 31 of 31

5 Appendix

5.1 List of Figures

Figure 1: Severity Distribution ... 6

Figure 2: Screenshot of the Stereum application ... 7

Figure 3: Injected script code in “index.html” .. 9

Figure 4: "sleep 100" gets executed on the client ... 9

Figure 5: Accessing the web interface from another PC .. 11

Figure 6: Discord website in Electron Launcher ... 14

Figure 7: SSH connection details are logged to stdout .. 19

5.2 List of Tables

Table 1: Vulnerabilities Overview ... 6

	1 Management Summary
	1.1 Findings Overview

	2 Test Scope
	3 Methodology
	3.1 Severity Rating (Severity Levels)
	3.2 Remediation Status

	4 Findings
	4.1 Command Execution in Electron Application
	4.2 SSH Tunnels Listen on Any IPv4 Address
	4.3 Path Traversal
	4.4 Links in Electron App Should Be Opened in Native Application
	4.5 Firewall Not Configured
	4.6 No Authentication Between Electron Client and Web Server
	4.7 Secrets Checked into Repository
	4.8 SSH Password in Standard Output
	4.9 Docker Container Runs with Root Privileges
	4.10 Reduce Root Account Usage
	4.11 Missing Integrity Checks for Third-Party Dependencies
	4.12 Password Stored as SHA512
	4.13 Use of RSA Public-Key Algorithm for SSH
	4.14 Code Pipeline Should Include More Checks
	4.15 Do Not Use GPG

	5 Appendix
	5.1 List of Figures
	5.2 List of Tables

